CS615 - Aspects of System Administration

DNS; HTTP

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens-tech.edu
http://www.cs.stevens-tech.edu/~jschauma/615A/
HW3

"Show your work."
In the beginning...

- UCLA-TEST
- SRI-SPRM
- UTAH-CS

Network diagram with IP addresses 10.0.0.1, 10.0.0.2, and 10.0.0.4.
In the beginning...
In the beginning...

Host Database
This file should contain the addresses and aliases
for local hosts that share this file.
#
127.0.0.1 localhost localhost.
#
RFC 1918 specifies that these networks are "internal".
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255
10.0.0.1 UCLA-TEST
10.0.0.2 SRI-SPRM
10.0.0.4 UTAH-CS
But then...
The Domain Name System

Computers like numbers.

10011011111101100101100110011111
The Domain Name System

Computers like numbers.

10011011 11110110 01011001 10011111

155 . 246 . 89 . 159
The Domain Name System

People like names.

ash.cs.stevens-tech.edu
The Domain Name System
The New Phonebook is here!

http://is.gd/XXp2sC

wget -q -O - http://is.gd/XXp2sC | grep -c "^HOST"
DNS: A distributed database
The Domain Name Space

The domain name space consists of a tree of *domain* names.
DNS: A hierarchical system
The Domain Name Space

The domain name space consists of a tree of *domain* names.

A subtree divides into *zones*.
The Domain Name Space

The domain name space consists of a tree of *domain* names.

A subtree divides into *zones*.

Each node may contain *resource records*.
The Domain Name Space

NS RR ("resource record") names the nameserver authoritative for delegated subzone.

"delegated subzone"
When an administrator wants to let another administrator manage a part of a zone, the first administrator's nameserver delegates part of the zone to another nameserver.

resource records associated with name

zone of authority, managed by a name server

see also: RFC 1034 4.2 How the database is divided into zones.
Domain Names

ash.cs.stevens-tech.edu

Domain Names are read from right to left and components separated by a “.”.
Domain Names

ash.cs.stevens-tech.edu.

The *root* is known as “.”, but is usually left out.
Domain Names

ash.cs.stevens-tech.edu.

There is a small number of top level domains.
Domain Names

ash.cs.stevens-tech.edu.

There is a number of top level domains.

wget -O - ftp://rs.internic.net/domain/root.zone | \
grep "IN<tab>*NS<tab>" | awk '{print $1}' | sort -u | wc -l

http://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
Domain Names

ash.cs.stevens-tech.edu.

Each domain can be divided into any number of sub domains.
Domain Names

ash.cs.stevens-tech.edu.

Each *domain* can be divided into any number of *sub domains*.
Domain Names

ash.cs.stevens-tech.edu.

The left-most component of a domain name may be a hostname.
Fully Qualified Domain Names

ash.cs.stevens-tech.edu.

A *hostname* with a domain name is known as a *FQDN*.
DNS servers come in two flavors

- Authoritative Nameservers
- Recursive Nameservers
Hostname resolution

Resolution on a recursive nameserver (aka *resolver*) involves a number of queries:

```
$ nslookup ash.cs.stevens-tech.edu
Server: 127.0.0.1
Address: 127.0.0.1

Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159
```

$
Hostname resolution

Resolution on a *resolver* involves a number of queries:

18:39:27.446190 IP i.root-servers.net.domain > panix.netmeister.org.62105: 11585- 0/8/8 (494)
18:39:27.481565 IP a.gtld-servers.net.domain > panix.netmeister.org.53168: 46575- 0/6/3 (609)
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ host -t ns .
 . name server I.ROOT-SERVERS.NET.
 . name server D.ROOT-SERVERS.NET.
 . name server C.ROOT-SERVERS.NET.
 . name server M.ROOT-SERVERS.NET.
 . name server F.ROOT-SERVERS.NET.
 . name server A.ROOT-SERVERS.NET.
 . name server E.ROOT-SERVERS.NET.
 . name server L.ROOT-SERVERS.NET.
 . name server H.ROOT-SERVERS.NET.
 . name server J.ROOT-SERVERS.NET.
 . name server B.ROOT-SERVERS.NET.
 . name server G.ROOT-SERVERS.NET.
 . name server K.ROOT-SERVERS.NET.
$```

Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig -t ns edu.
[...]
;; ANSWER SECTION:
edu. 172800 IN NS l.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
edu. 172800 IN NS g.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS d.edu-servers.net.
```

```
;; ADDITIONAL SECTION:
c.edu-servers.net. 36626 IN A 192.26.92.30
d.edu-servers.net. 13274 IN A 192.31.80.30
l.edu-servers.net. 36626 IN A 192.41.162.30
[...]
$
```
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig @c.edu-servers.net -t ns stevens.edu.
[...]
;; AUTHORITY SECTION:
stevens.edu. 172800 IN NS nrac.stevens-tech.edu.
stevens.edu. 172800 IN NS sitult.stevens-tech.edu.

;; ADDITIONAL SECTION:
nrac.stevens-tech.edu. 172800 IN A 155.246.1.21
sitult.stevens-tech.edu. 172800 IN A 155.246.1.20
[...]
$
```
Hostname resolution
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```bash
$ nslookup ash.cs.stevens-tech.edu
Server: 127.0.0.1
Address: 127.0.0.1
#53

Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159

$ #53
```
Hostname resolution
Hostname resolution

$ ftp -o - ftp.internic.net:/domain/db.cache | more
http://www.internic.net/zones/named.root
Operation Global Blackout

http://pastebin.com/XZ3EGsbc
There are 13 root servers.
DNS: A distributed system

There are 13 root servers.

Except... there are more.
DNS: A distributed system

There are 13 root authorities.
DNS: A distributed system

There are 13 root server addresses.
DNS: A distributed system

There are hundreds of root servers.
DNS: A distributed system
Operation Global Blackout

GlobalBlackOut is another Fake Operation. No intention of #Anonymous to cut Internet.
DNS: A distributed database
DNS Resource Records

- **NS** – an authoritative name server
- **CNAME** – the canonical name for an alias
- **SOA** – marks the start of a zone of authority
- **PTR** – a domain name pointer
- **HINFO** – host information
- **MX** – mail exchange
- **TXT** text strings
- ...
DNS Resource Records

You’ve all seen PTR records:

```bash
$ host ash.cs.stevens-tech.edu
ash.cs.stevens-tech.edu has address 155.246.89.159
ash.cs.stevens-tech.edu mail is handled by 0 guinness.cs.stevens-tech.edu.
$ host 155.246.89.159
159.89.246.155.in-addr.arpa domain name pointer ash.cs.stevens-tech.edu.
$
```

Stevens doesn’t have write access to the `in-addr.arpa` domain. How does this work?
Creative uses of DNS Resource Records

- identifying sources of SPAM
- find out if the internet is on fire:
  
  ```
 dig +short txt istheinternetonfire.com
  ```
- find ASN numbers by IP addresses:
  
  ```
 dig +short 159.89.246.155.origin.asn.cymru.com TXT
  ```
- check a resolver’s source port randomization (to help mitigate DNS Cache Poisoning attacks):
  
  ```
 dig +short porttest.dns-oarc.net TXT
  ```
- using DNS to publish SSH key fingerprints (RFC4255, ssh_config(5) VerifyHostKeyDNS; for best results combine with DNSSEC):
  
  ```
 dig +short ftp.netbsd.org SSHFP
  ```
  
  ```
 ssh -o "VerifyHostKeyDNS yes" ftp.netbsd.org
 [...]
  ```
  
  Matching host key fingerprint found in DNS.
  
  Are you sure you want to continue connecting (yes/no)?
Hooray!

5 Minute Break
Hypertext Transfer Protocol

Today’s Universal Internet Pipe
HTTP: Hypertext

W W W

“The World Wide Web is the only thing I know of whose shortened form takes three times longer to say than what it’s short for.” – Douglas Adams
HTTP: Hypertext

Abstract

This proposal concerns the management of general information about accelerators and experiments at CERN. It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system.

Keywords: Hypertext, Computer conferencing, Document retrieval, Information management, Project control

http://is.gd/JnZaN6
HTTP

Hypertext Transfer Protocol

RFC2616
HTTP is a request/response protocol.
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
2. server responds
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
   - request method
   - URI
   - protocol version
   - request modifiers
   - client information

2. server responds
HTTP: A client request

```
$ telnet www.google.com 80
Trying 173.194.75.147...
Connected to www.google.com.
Escape character is '^[).
GET / HTTP/1.0
```
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
   - request method
   - URI
   - protocol version
   - request modifiers
   - client information

2. server responds
   - status line (including success or error code)
   - server information
   - entity metainformation
   - content
HTTP: a server response

HTTP/1.0 200 OK
Date: Sun, 31 Mar 2013 01:54:40 GMT
Set-Cookie: PREF=ID=c5eb56d629b347cc:FF=0:TM=1364694880:LM=1364694880:
S=sIdRFdxV9YvtQ01G; expires=Tue, 31-Mar-2015 01:54:40 GMT; path=/;
domain=.google.com
Set-Cookie: NID=67=hvBn0ob2NoZW4haTJVfajbcyn_jips50lKRe-8nawzdCZ6AukNR
_s8CNHD6ZA-Z2721nA3TpLrNXt-2zyIui23j4kdsdF8Gg--PmGsMOJ3Jv5frEzQG1e1HJv92HL-w2;
expires=Mon, 30-Sep-2013 01:54:40 GMT; path=/; domain=.google.com; HttpOnly
Server: gws

<!doctype html><html itemscope="itemscope" itemtype="http://schema.org/WebPage">
<head><meta content="Search the..."
The Hypertext Transfer Protocol

Server status codes:

- **1xx** – Informational; Request received, continuing process
- **2xx** – Success; The action was successfully received, understood, and accepted
- **3xx** – Redirection; Further action must be taken in order to complete the request
- **4xx** – Client Error; The request contains bad syntax or cannot be fulfilled
- **5xx** – Server Error; The server failed to fulfill an apparently valid request
HTTP: A client request

$ telnet www.cs.stevens.edu 80
Trying 155.246.89.84...
Escape character is ‘^[’.
GET / HTTP/1.0

HTTP/1.1 302 Found
Date: Sun, 12 Apr 2015 20:37:23 GMT
Server: Apache/2.2.22 (Debian)
Location: http://www.stevens.edu/ses/cs
Vary: Accept-Encoding
Content-Length: 297
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>302 Found</title>
</head><body>
HTTP: A client request

$ telnet www.stevens.edu 80
Trying 104.16.126.51...
Connected to www.stevens.edu.cdn.cloudflare.net.
Escape character is ‘^]’.
GET /ses/cs HTTP/1.1
Host: www.stevens.edu

HTTP/1.1 301 Moved Permanently
Date: Sun, 05 Mar 2017 21:17:24 GMT
Location: https://www.stevens.edu/ses/cs
HTTP: A client request

$ openssl s_client -connect www.stevens.edu:443
[...]
GET /ses/cs HTTP/1.1
Host: www.stevens.edu

HTTP/1.1 301 Moved Permanently
Location: https://www.stevens.edu/schaefer-school-engineering-science/departments/computer-science
HTTP: A client request

$ openssl s_client -connect www.stevens.edu:443

GET /schaefer-school-engineering-science/departments/computer-science HTTP/1.1
Host: www.stevens.edu

HTTP/1.1 200 OK
Date: Sun, 05 Mar 2017 21:26:34 GMT
Last-Modified: Sun, 05 Mar 2017 16:50:25 GMT
Content-Type: text/html; charset=utf-8
X-Drupal-Cache: HIT
X-Generator: Drupal 7 (http://drupal.org)
Server: cloudflare-nginx

7c9f
<!DOCTYPE html>
<html lang="en" class="no-js">
<head>
HTTP: A client request
HTTP - more than just text

HTTP is a *Transfer Protocol* – serving *data*, not any specific text format.

- **Accept-Encoding** client header can specify different formats such as *gzip*, *Shared Dictionary Compression over HTTP (SDCH)* etc.
- **corresponding server headers**: *Content-Type* and *Content-Encoding*
HTTP - more than just static data

HTTP is a Transfer Protocol – what is transferred need not be static; resources may generate different data to return based on many variables.

- CGI – resource is executed, needs to generate appropriate response headers
- server-side scripting (ASP, PHP, Perl, ...)
- client-side scripting (JavaScript/ECMAScript/JScript, ...)
- applications based on HTTP, using:
  - AJAX
  - RESTful services
  - JSON, XML, YAML to represent state and abstract information
HTTP Proxy Servers

- HTTP traffic usually is very asymmetric
- a lot of the content is static
- network ACLs may restrict traffic flow
HTTP overload

Ways to mitigate HTTP overload:

- DNS round-robin to many web servers
- load balancing
- web cache / accelerators (reverse proxies)
- content delivery networks

These solutions depend on the location within the network and the scale of the environment.
Load Balancing

DNS; HTTP

March 6, 2017
Load Balancing: Inbound
Load Balancing: Outbound

- **Client PC**: 172.10.12.24
- **Load Balancer**: 192.168.0.10/24
- **Local Router**: 192.168.0.1/24
- **Layer 2 Switch**
- **VIP**: 192.168.0.200:80
- **LAN to Client**
- **Real Servers**: 192.168.0.100, 192.168.0.101, 192.168.0.102
- **LAN to Real Servers**
- **Server to Client (by way of load balancer)**
- **Source**: src: 192.168.0.102, dst: 192.168.0.10
- **DNS; HTTP**
Load Balancing: Direct Server Return

- **Client:** 1.1.1.1
- **Internet**
- **Load Balancer:** VIP: 2.2.2.2, VIP MAC: AAAA
- **Server:** Loopback IP: 2.2.2.2, NIC IP: 3.3.3.3, NIC MAC: BBBB
- **Steps:**
  1. src: 2.2.2.2, dst: 1.1.1.1
  2. src: 1.1.1.1, dst: 2.2.2.2
Content Delivery Networks
Content Delivery Networks

- cache content in strategic locations
- determine location to serve from via geomapping of IP addresses (beware IPv6 aggregation!)
- often uses a separate domain to distinguish small objects/large objects or dynamic content/static content
- either out-sourced or in-house (if your organization is a Tier-1 or Tier-2 peering partner)
- request routing happens via Global Server Load Balancing, DNS-based request routing, anycasting etc.
- provides vast amounts of interesting data about your clients (see http://www.akamai.com/stateoftheinternet/)
Homework

Reading

HTTP etc.:

- RFC 2616, 2818, 3875
- http://httpd.apache.org/docs/
- http://www.w3.org/Protocols/
- REST: http://is.gd/leSvGa
- CDNs: http://is.gd/R5DoxA
  - http://www.edgecast.com/
  - https://aws.amazon.com/cloudfront/
  - http://www.akamai.com/
  - http://www.limelight.com/
  - ...